Clasificación de frutos del durazno en maduros, no maduros y dañados hacia la cosecha automatizada

  • Ma. Dolores Arévalo Zenteno Universidad Autónoma del Estado de México
  • José Sergio Ruiz Castilla Universidad Autónoma del Estado de México
  • Joel Ayala de la Vega Universidad Autónoma del Estado de México

Resumen

A partir de la tecnología de visión artificial, específicamente de redes neuronales convolucionales, se propuso una solución para realizar el reconocimiento de frutos de durazno maduros, así como la identificación de frutos dañados. La finalidad es obtener frutos con el nivel de calidad adecuado para su comercialización. Para lograr este propósito, se obtuvieron imágenes de duraznos en un ambiente no controlado. Se recortaron las imágenes digitales hasta obtener el ?rea de interés. Se configuraron tres conjuntos de datos: el primero, de duraznos maduros e inmaduros; el segundo, también de duraznos maduros e inmaduros pero con enfoque en un ?rea textural, y el tercero, de duraznos sanos y da?ados. Se aplicó una red neuronal convolucional, que fue programada en el lenguaje Python, las librerías de Keras y TensorFlow. Durante las pruebas se obtuvo una precisión de 95.31 % a la hora de elegir entre maduros y no maduros. Mientras que al clasificar los duraznos sanos y dañados se obtuvo 92.18 % de precisión. Por último, al clasificar las tres categorías (dañados, inmaduros y maduros), se obtuvo 83.33 % de precisión. Los resultados anteriores indican que con inteligencia artificial embebida en un dispositivo físico se puede hacer la clasificación del fruto del durazno.
Publicado
2021-01-11
Cómo citar
Arévalo Zenteno, M. D., Ruiz Castilla, J. S., & Ayala de la Vega, J. (2021). Clasificación de frutos del durazno en maduros, no maduros y dañados hacia la cosecha automatizada. CIBA Revista Iberoamericana De Las Ciencias Biológicas Y Agropecuarias, 10(19), 39 - 53. https://doi.org/10.23913/ciba.v10i19.107
Sección
Artículos Científicos